Dr. Lee Frick Lecture:
Food Allergy

Hugh A. Sampson, M.D.

Professor of Pediatrics & Immunology
Dean for Translational Biomedical Sciences
Director, Jaffe Food Allergy Institute
Mount Sinai School of Medicine
New York, NY
Faculty Disclosure

Hugh A. Sampson, MD

For the 12 months preceding this CME activity, I disclose the following types of financial relationships:

Honoraria received from:
• Genentech, Novartis

Consulted for:
• Allertein Therapeutics, LLC, Food Allergy Initiative, University of Nebraska

Held Common Stock in:
• None

Research, clinical trial, or drug study funds received from:
• Food Allergy Initiative, National Institutes of Health

I will not be discussing products that are investigational or not labeled for use under discussion.
Knowledge Gaps:
1) basic mechanisms of oral tolerance
2) basic immunopathogenic mechanisms of IgE- & non-IgE-mediated disorders
3) optimal diagnostics & therapeutic strategies
 - utilizing approaches used >100 yrs ago
 - Allergy tests [prick skin tests]
 - Elimination diets
 - Oral immunotherapy
4) properties of foods that make them allergenic
5) effects of cooking, additives/preservatives & processing on allergenic properties of foods
6) genetic & epigenetic factors \(\Rightarrow\) food allergy
Food Allergy is a Global Issue

A limited number of foods are responsible for the majority of food-induced allergic reactions in children world-wide.

USA & Canada:
- Milk
- Egg
- Peanuts
- Tree nuts
- Seafood

USA & Canada:
- Milk
- Egg
- Peanuts
- Tree nuts
- Seafood

France:
- Egg
- Milk
- Peanuts
- Mustard

Australia:
- Milk
- Egg
- Peanuts
- Sesame seeds

New Zealand:
- Milk
- Egg
- Peanuts

UK:
- Milk
- Egg
- Peanuts
- Tree nuts

Israel:
- Egg
- Milk
- Sesame seeds

Japan:
- Egg
- Milk
- Wheat
- Buckwheat
- Fish
- Fruit

But major regional differences
Increasing Prevalence of Peanut Allergy in the United States

Peanut or Tree Nut Allergy < age 18 yrs

Sicherer SH et al. JACI 2010; 125(6):1322-1326
CDC Brief on Food Allergy in US

- 3 million or ~4% of children <18 yrs have food allergy
 - 18% increase between 1997 and 2007

Figure 4. Average number of hospital discharges per year among children under age 18 years with any diagnosis related to food allergy: United States, 1998–2006

3.5 fold increase in hospital discharges over 8 yr period

<table>
<thead>
<tr>
<th>Years</th>
<th>Average number of discharges per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998–2000</td>
<td>2,615</td>
</tr>
<tr>
<td>2001–2003</td>
<td>4,135</td>
</tr>
<tr>
<td>2004–2006</td>
<td>19,537</td>
</tr>
</tbody>
</table>

*Statistically significant trend.
SOURCE: CDC/NCHS, National Health Interview Survey.
Food Allergy and Anaphylaxis

- Olmstead County Survey: 50% ↑ in food-induced anaphylaxis in past decade
 \[\sim 50,000 \text{ cases / yr in US}\]

 Decker et al. *JACI* 2008; 122:1161-1165

- FDA NEISS [34 EDs; 2 mo period]: ED visits / year in US
 - food allergy: \(~ 125,000\)
 - hospitalizations: \(~ 3,100\)
 - anaphylaxis: \(~ 14,000\)

 Ross et al. *JACI* 2008; 121:166-171

- Fatal reactions in US: \(?\)
 \[\text{estimates of } \sim 100 \text{ / yr}\]
 - \(~ 10\% \) of food-allergic reactions are life-threatening
 - virtually all fatal reactions are preceded by relatively mild reactions – What changed? How to predict?
Earlier “Dogma”

- Strict avoidance of food allergens until an infant’s immune system becomes more mature will prevent the development of food allergy.
 - Contamination & environmental exposure make strict avoidance virtually impossible.
 - High levels of environmental exposure to peanut during infancy promote sensitization (Fox AT et al. JACI 2009;123:417-23).
 - Early oral exposure may actually promote tolerance.

- Peanut allergy 1/10th prevalence compared to UK (du Toit JACI 2008; 122:984).
- Milk allergy in Israel followed ~13,000 infants; 381 (2.9%) developed CMA (Katz Y et al. JACI 2010; 126:77-82).
Earlier “Dogma”

• All IgE-mediated food allergy is the same; i.e. single phenotype
• Strict elimination of a food allergen will promote the development of tolerance; eliminates “boosting” and loss of memory cells
 - children with food allergy + atopic dermatitis who had no accidental ingestions became tolerant whereas those having frequent accidents developed more severe and persistent food allergy (reverse causation)
 - parents often unknowingly gave children milk & egg in baked products; our efforts at stringent diets may have contributed to delay in tolerance induction
Natural Course of Food Allergy

- Following standard of care: strict food allergen avoidance

Percent with clinical food allergy

Birth | 2 | 4 | 6 | 8 | Years

80% at 16 yrs

Milk & Egg
Ovomucoid: IgE Epitopes

IgE-binding Sites

Persistent egg allergy

Transient egg allergy

Effect of Cooking on Sequential & Conformational Epitopes of Food Proteins

Hypothesis: Children who “outgrow” milk allergy (Pt #2) will tolerate baked-milk products
“Heat-Denatured Milk” Study

100 milk-allergic pediatric subjects enrolled
- Mean age: 6.7 yrs; range: 2.6 – 17.3 yrs

Challenged sequentially to baked muffin, waffle & uncooked milk (~ 1.3 g milk protein / baked product)

Milk challenges:
- 9 (~10%) “outgrown” – tolerated all challenges
- 68 [77%] HCM tolerant – baked-milk products only
- 23 [23%] Allergic – could not tolerate milk in any form

No difference between groups: age, family history, exclusive breast feeding, age of 1st reaction

Allergic patients had larger PSTs, > milk-specific IgEs and > basophil activation than HCM tolerant patients

Nowak et al. JACI 2008; 122:342-347
Basophil Activation in CMA

• Change is CD63 expression on basophils:
 - whole blood stimulated with varying milk protein
 - basophils identified as CD123⁺, HLA-DR⁻, CD41a⁻, CD203⁺

Wanich N et al
Milk-specific IgE Epitope Binding

Standard protocol

Failed all

Pass baked/all

αS1 Casein

αS2 Casein

β Casein

βlac

κ Casein

Competition

Failed all

Pass baked/all

Wang J et al. JACI 2010; 125:695-702
Changes in Milk-specific PST, IgE & IgG₄ in HCM-Tolerant Subjects

Baked-milk products added to the diets of HM-tolerant children

- Median Skin Prick Test (wheal diameter, mm) in HCM-tolerant Group over Time
 - P = <0.001

- Median Casein-Specific IgG₄ (μg/L) in HCM-tolerant Group over Time
 - P = 0.001

- Median Milk-Specific IgE (kU/L) in HCM-tolerant Group over Time
 - P = 0.183

- Median B Lactoglobulin-Specific IgG₄ (μg/L) in Baked Milk Group over Time
 - P = 0.592
“Heat-denatured Milk” Study
Long-term Follow-up

• 89 children (median age: 6.5 yrs; IQR: 5.1- 8.5) followed for a median of 34 months (IQR: 18 – 49 mos.)

• 60 children (median age: 5.4 yrs; IQR: 4.1- 8.7) followed for a median of 40 months (IQR: 31 – 46 mos.)

• Of 66 H-M tolerant children (Group A), 43 (65%) tolerated regular milk (UHM), 14 (21%) continued on H-M products, and 9 (14%) chose to eliminate all milk products

• Of 23 H-M reactive children (Group B), 2 (8%) tolerated UHM, 3 (13%) tolerated H-M products, and 18 (79%) remained reactive to all forms of milk
Development of Tolerance

HM vs. UHM tolerant

HM-tolerant 28 times more likely to develop full tolerance compared to UHM tolerant; p = 0.0004

N = 60
N = 57

Treated vs. Controls

HM-tolerant treated 16 times more likely to develop full tolerance compared to control; p < 0.0001

N = 66
N = 23
N = 57
N = 60
Diagnostic Approaches

- from allergen source to components

Traditional diagnostics

CRD helps distinguish sensitization to allergenic protein from cross-reactivity
Allergen Component Protein & Peptide Microarray Assays

- Ordered array of overlapping peptides (20/18)
- 6 major milk proteins: α_s1, α_s2-,β- & κ-caseins, β-lactoglobulin & α-lactalbumin
- Microliters of serum
- Labeled with Cy3
Component Resolved Diagnostics in Food Allergy

Pollen Cross-Reactive Components

<table>
<thead>
<tr>
<th>Food</th>
<th>Pollen cross-reactive components*</th>
<th>LTP</th>
<th>Pollen non-cross-reactive components**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peanut</td>
<td>Ara h 8</td>
<td></td>
<td>Ara h 9</td>
</tr>
<tr>
<td></td>
<td>Ara h 5</td>
<td></td>
<td>Ara h 1; Ara h 2; Ara h 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ara h 4; Ara h 6; Ara h 7</td>
</tr>
<tr>
<td>Hazelnut</td>
<td>Cor a 1</td>
<td></td>
<td>Cor a 8</td>
</tr>
<tr>
<td></td>
<td>Cor a 2</td>
<td></td>
<td>Cor a 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cor a 11</td>
</tr>
<tr>
<td>Soybean</td>
<td>Gly m 4</td>
<td></td>
<td>Gly m 1</td>
</tr>
<tr>
<td></td>
<td>Gly m 3</td>
<td></td>
<td>Gly m 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gly m 6</td>
</tr>
<tr>
<td>Wheat</td>
<td>Tri a 12</td>
<td></td>
<td>Tri a 19 (ω-5 gliadin)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tri a 21 - αlfa gliadin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tri a 26 - HMW glutenin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tri a 28 - AAI dimer 0.19</td>
</tr>
</tbody>
</table>

* Birch tree pollen, Timothy grass pollen for wheat
** Storage seed proteins, albumins and globulins

Ana risk

PRP-10 Profilin

Component Resolved Diagnostics in Food Allergy

- Ara h 2 > 1.63 kU/L → 123/123 positive challenge
 - Ara h 2 < 1.63 kU/L → 52/82 positive challenge
 - Ara h 2 level does not predict threshold dose
 Bindslev-Jensen C. et al. (in press)

- Poor correlation between fruit & hazelnut IgE & clinical reaction
- Sensitization to Bet v 1 homologues, Pru av 1 / Mal d 1 / Cor a 1, is a risk factor for OAS
- Sensitization to LTPs, Pru av 3 / Mal d 3 / Cor a 8 / Jug r 3, is a risk factor for systemic reactions to cherry / apple / hazelnut / walnut (30% - 50%)
 - sensitization to Cor a 9 is a risk factor for systemic reaction, especially in children
Epitope Diversity & Reactivity

- Greater epitope diversity = more peanut-specific IgE molecules present on mast cells ➔ greater releasibility

- Greater epitope diversity = more severe reactions

- BUT other factors must be contributing to clinical reactivity; e.g. permeability, effector cell activation

Shreffler et al. *JACI* 2004; 113:776-782
Immunotherapeutic Approaches

• Allergen-specific Immunotherapy
 - Feeding “heat-denatured” protein
 - Oral Immunotherapy [OIT]
 - OIT+ omalizumab
 - Sublingual Immunotherapy [SLIT]
 - Epicutaneous Immunotherapy
 - Engineered recombinant protein [EMP-123]

• Allergen non-specific immunotherapy
 - Anti-IgE immunotherapy
 - Chinese Herbal medications
Oral Immunotherapy

- Published OIT studies:
 - Schofield (egg) 1908
 - Staden (milk) 2007*
 - Skripak (milk) 2007*
 - Longo (milk) 2008
 - Buchanan (egg) 2008*
 - Jones (peanut) 2009
 - Varshney (peanut) 2011
 - Anagnostou (peanut) 2011
 - Rodriguez (egg) 2011
 - Martorel (milk) 2011
 - Keet (milk) 2012
 - Varshney et al. J Allergy Clin Immunol 2011

* denotes DBPC

- NIAID-sponsored Consortium of Food Allergy Research
 - comprised of 5 sites: MSSM, Hopkins, Duke, Arkansas & NJH
- Investigate utility of OIT in egg-allergic patients
CoFAR 3: Egg OIT

- **Primary Objectives**
 - study the clinical effects, as well as the safety and immunologic effects, of an egg OIT protocol

- **Study Design**
 - multi-center randomized, double-blind, placebo-controlled, prospective study through 40 - 48 weeks

- **Enrollment criteria (target n = 55)**
 - Age 6 to 18 yrs
 - convincing clinical history of egg allergy
 - serum IgE [UniCAP™] to egg of >5 kUA/L [<12 mo]
 - OR Age 5 yrs
 - convincing clinical history of egg allergy
 - serum IgE [UniCAP™] to egg of >12 kUA/L [<12 mo]
Egg OIT - Study Phases

Egg Challenge (5 gm DBPC)
~44 wks

Desensitization

Dose Build-up (max 2000 mg)

Home Maintenance (8 – 10 weeks)

2000 mg

~ 12 – 14 months

“Maintenance”

4 – 6 wks off

Egg Challenge (10 gm DBPC)
~12 – 24 mo later

Egg Challenge (10 gm DBPC)

Tolerance

Initial escalation day (max 50 mg)
Results of Oral Food Challenge

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n=participants)</th>
<th>Egg OIT (n=participants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 gm desensitization OFC (44 wks)*</td>
<td>0/15 (0%)</td>
<td>21/40 (52.5%)</td>
</tr>
<tr>
<td>10 gm desensitization OFC (2 yr)**</td>
<td>0/15 (0%) (n=1)</td>
<td>30/40 (75%) (n=34)</td>
</tr>
<tr>
<td>10 gm tolerance OFC (2 yr)*</td>
<td>0/15 (0%) (n=0)</td>
<td>11/40 (27.5%) (n=29)</td>
</tr>
</tbody>
</table>

*\(p < 0.001\)

**\(p = 0.025\)

- 25% of ~12,000 doses associate with AR; 95% mild
- 6 Egg OIT subjects stopped dosing prior to 2 yr OFC
- PST wheal size & egg-induced basophil activation ↓; egg-specific IgG4 increased in Egg OIT group

Supported by NIH-NIAID U19AI066738 and U0AI066560
Peanut Sublingual Immunotherapy

- 18 subjects (1.6 – 10.5 yrs) randomized 11:7 to peanut SLIT
 - 6 mo dose escalation to 2 mg & 6 mos maintenance
 - DBPCFC to 2.5 g
- Results:
 - 11.5% of active doses & 8.3% of placebo doses associated with ARs
 - DBPCFC (median):
 - Active – 1,710 mg
 - Placebo – 85 mg

20-fold more PN ingested by SLIT Grp vs Placebo; P=0.011

Kim et al. JACI 2011; 127:640-646
Peanut Sublingual Immunotherapy

Kim et al. JACI 2011; 127:640-646
Epicutaneous Immunotherapy

- Cow’s milk EPIT: double-blind placebo-controlled
 - 3 mos – 15 yrs with + OFC to < 10 ml of milk
- Applied patch for 48 hrs 3x’s/week
 - 1 mg milk powder on patch
 - 21 subjects screened; 19 randomized
 - median age: 3.82 yrs [10 mo – 7½ yr]
- Treated for 3 mo & then repeated OFC
 - 4 local adverse reactions (2 in placebo); no systemic
- OFC Outcome (per protocol):
 - Milk-EPIT (n=9): 1.77±2.98 ml → 23.61±28.61 ml; p=0.18
 - Placebo (n=7): 4.36±5.88 ml → 5.44±5.88 ml; p=NS

 Dupont et al. JACI 2010; 125:1165-67

- CoFAR – peanut EPIT in 60 6 – 15 y/o peanut allergics
“Engineered” Recombinant Proteins

- Vaccines for peanut allergy – affects >1.6 million
- Identified *Ara h1* - 3 as major allergenic proteins, isolated, sequenced & cloned full-length cDNAs
- Identified IgE-binding epitopes on *Ara h1* - 3
- Substituted single amino acid within epitope using PCR mutagenesis;
 - e.g. *Ara h2* – a.a. 27-36 - *D RRC QSQL ER*
 - eliminates or markedly reduced IgE binding
 - T cell proliferative response unchanged
 - recombinant protein produced in *E. coli*
"Engineered" Recombinant Protein

Ara h1

Single amino acid substitution

Ara h2

% IgE binding

Immunoblot

T-cell Epitope Specificity

Desensitization with HKE-Ara h1-3 (EMP-123) Suppository: Protocol

<table>
<thead>
<tr>
<th>Sensitization</th>
<th>Desensitization</th>
<th>Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.g.</td>
<td>p.r</td>
<td>I.g.</td>
</tr>
</tbody>
</table>

- **Sensitization:**
 - 6 groups
 - N=12/group

- **Desensitization**
 - Sham
 - EMP123, 0.9µg
 - EMP123, 9µg
 - EMP123, 90µg
 - HKE-vector
 - Naive

- **Challenge**
 - 1st
 - n=12
 - sac. 4
 - SP culture
 - 2nd
 - n=8
 - sac. 4
 - 3rd
 - n=4
 - sac. 4

Symptom Score
- Body temperature
- Plasma histamine level

Li XM et al. *JACI* 2003; 112:159-67
Desensitization with HKE-Ara h1-3 (EMP-123) Suppository: W22 Challenge

** p<0.01 vs Sham

Li XM et al. *JACI* 2003; 112:159-67
Desensitization with HKE-Ara h1-3 (EMP-123) Suppository: W22 Challenge

Plasma Histamine, nM

<table>
<thead>
<tr>
<th>Group</th>
<th>Methyl Cellulose</th>
<th>0.9 μg</th>
<th>9 μg</th>
<th>90 μg</th>
<th>Vector</th>
<th>90 μg</th>
<th>Naive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKE-mAra h1-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9 μg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 μg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 μg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inverse response with body temperature

*p < 0.05 vs Sham
EMP-123 Desensitization
Peanut-specific IgE Levels

PN-Specific IgE, ng/ml

Sham
EMP-123, 0.9
EMP-123, 9
EMP-123, 90
HKE-vector
Naïve

*, p<0.05; ***, p<0.001 vs Sham
EMP-123-Induced Decrease in Th2 Cytokine Production

IL-4

- **IL-4, pg/ml**
 - Sham
 - 0.9 µg
 - 9 µg
 - 90 µg
 - vector
 - Naive

IL-5

- **IL-5, pg/ml**
 - Sham
 - 0.9 µg
 - 9 µg
 - 90 µg
 - vector
 - Naive

- PN (yellow bars)
- Medium (blue bars)

- **Significance Levels**:
 - *: p < 0.05
 - **: p < 0.01
 - ***: p < 0.001
“Engineered” Recombinant Proteins

- In the murine model of peanut anaphylaxis, treatment with EMP-123 prevented allergic reactions following peanut challenge as demonstrated by the following:
 - lack of allergic symptoms or ↑ plasma histamine
 - ↓ peanut-specific IgE and ↑ IgG2a
 - ↓ Th2 cytokines, IL-4, -5, & 13 & ↑ IFN-γ and TGF-β from peanut-stimulated splenocytes in vitro
- CoFAR Study: Phase 1 Safety Study (EMP-123):
 - 10 peanut-allergic adults given 10 μg – 3060 μg over 10 wks + 3 biweekly doses
 - 3 with mild-mod & 2 with severe reactions; failed to complete dosing
 - PST titration significantly reduced (p =0.02)
 - no change in PN-specific IgE or IgG₄
Treatment of Food Allergies

• Avoidance & emergency treatment

• Allergen-specific Immunotherapy
 - Feeding “heat-denatured” protein
 - Oral Immunotherapy [OIT] + anti-IgE
 - Sublingual Immunotherapy [SLIT]
 - Epicutaneous Immunotherapy
 - Engineered recombinant protein

• Allergen non-specific immunotherapy
 - Anti-IgE immunotherapy (omalizumab)
 - Chinese Herbal medications
3D HPLC fingerprint of FAHF-2
JACI 2009
Persistent Effects of FAHF-2

Sensitization & Boosting
- Week 0 to 8
- Sensitization and Boosting: 10 & 50 mg PN + CT, ig
- FAHF-2 treatment: 64mg/day, ig

Challenge
- Week 14 to 66
- Challenge: 200mg PN + CT, ig

Sham

Early Treatment (w3-w9)

Late Treatment (w8-w14)

Naive

5 wk old C3H/HeJ mice

Srivastava K et al. JACI 2009; 123:443-451
Persistent effects of FAHF-2: Symptom Scores

Symptom Score

W14, W18, W22, W28

Early Treatment

Late Treatment

W34, W40, W50, W66

***, P<0.001 vs Sham
Persistent Effects of FAHF-2: Cytokines (Wk 50 Post-therapy)

Mesenteric lymph node cells

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Sham</th>
<th>FAHF-2</th>
<th>Naive</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4</td>
<td>0</td>
<td>**</td>
<td>0</td>
</tr>
<tr>
<td>IL-5</td>
<td>100</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>IL-13</td>
<td>1500</td>
<td>1400</td>
<td>0</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>2500</td>
<td>3000</td>
<td>200</td>
</tr>
<tr>
<td>IL-10</td>
<td>1800</td>
<td>2200</td>
<td>0</td>
</tr>
<tr>
<td>TGF-β</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

* Significant differences

P values

P < 0.05
Clinical Trial of FAHF-2

• Study Subjects:
 - 12 – 45 years of age
 - Documented peanut, tree nut, fish &/or shellfish allergy

• Study phases:
 - Acute phase I: 1 wk, DBPC, dose escalation (18 patients)
 - completed; no significant adverse effects
 - Extended phase I: 6 months open label (18 patients)
 - completed; no significant adverse effects
 - Monitor immunological changes
 - decreased basophil activation (p<0.05)
 - trend to decreased peripheral eosinophils (p=0.058)

• Phase II efficacy trial ongoing
Future Treatment of Food Allergies

• Avoidance & emergency treatment
• Allergen-specific Immunotherapy
 - Feeding “heat-denatured” protein
 - Oral Immunotherapy [OIT] + anti-IgE
 - Sublingual Immunotherapy [SLIT]
 - Epicutaneous Immunotherapy
 - Engineered recombinant protein

• Allergen non-specific immunotherapy
 - Anti-IgE immunotherapy (omalizumab)
 - Chinese Herbal medications
Therapeutics in the Pipeline

- Nanoparticles containing T-cell epitopes
 - T-cell epitopes of Ara h1, 2, 3 & 6
 - use in SLIT/OIT or subcutaneous formulations
- Ara h 2-FcγRI chimeric protein
- *Lactobacillus* transfected with IL-12 & β-lac
- Engineered recombinant proteins
 - multiple mutations of IgE-binding sites
- Nanoparticles containing peanut + LPS for SLIT
- Peanut-containing polymer film for oral application
 - overcomes low doses in standard SLIT
Future in Food Allergy

What we know here is very little, but what we are ignorant of is immense.

-- Pierre Simon Laplace 1749-1827

- Need for critical reassessment and strict adherence to the scientific method
- Need to understand basic immunology of tolerance and immunopathogenic mechanisms in man
- Need to understand the structural properties of allergens & effects of processing & additives
- Need to understand genetic & epigenetic factors ➔ FA
- Need for innovative diagnostic & therapeutic approaches
Future Directions in Food Allergy

• Food allergy is an ideal model to investigate allergic mechanisms – we can control allergen exposure
• Global epidemiologic initiatives are vital to help explain the increasing prevalence of food allergy
• Exploration of the microbiome & its effects on tolerance induction is critical
• Refinement of component- & epitope-based diagnostics will improve our ability to diagnose FA, but…
• Refinement of OIT and SLIT will provide relief to many food allergic patients, but they are not the final answer
• Genetic & epigenetic studies are critical & will uncover clues as to other mechanisms & pathways not yet appreciated in symptomatic food allergy